rbWg�Y�vhl7��n*��O�K:}��vR�!�9#�]������l��d�i�PN��VpV�#uDp��ݳ�6|]�M�[��K�A1���J(�F�q@ H ��!/�T-c�SZ�$����ZKr��Z� �|.����ĭ�?�����F��b��/���$��h���m�WE���/AI��E�� |i S���b�f]�MHgA)��9V �q� �j�Bӆ�^�����iY��V ��)�Қ�c��E�d{|l8���Tx� ��ȼ�,�i Y!��~ź��yg��L��P�CX���cU2{9 e����F�e&m�3J�1������8߭K̥|N�����d5��H���h�{�T�CY ��K꼩���2N����[³�����SƍU�gL=o�Wh�m� Non-examples. METRIC AND TOPOLOGICAL SPACES 3 1. Any incomplete space. We now give examples of metric spaces. Example 1. /Length 2734 /Length 3871 >> Assume therefore that x 6= 0 and y 6= 0. stream Therefore our de nition of a complete metric space applies to normed vector spaces: an n.v.s. Turns out, these three definitions are essentially equivalent. The fact that every pair is "spread out" is why this metric is called discrete. (��c��p�>����V���;0y����\|ʋr�0��}�b1WzApC�""�۷_y�8Y`[1M����A��(Y���/�����P�|�]�p�"˗���Ge`����:hH�`Q|�GS)0�iz;.��ݴ��:��%��� x��َ���}�B�'�ðor~ȱIl� � �~�J��)��������橖4cO�$/R���uuUu1Y�-�ş�������ퟘY0���v���nj��I�8�lq�Z|��jms}#�������m],��~�/����o�Z�$Β�!�&D��lq�U,DF�n7���7\��$�\Ȩ(�y�uU�KK��Ə]V���[�Tk�����xY���g������r��f�x�/��lh��ęJ���a������6���b���?�����%5ڦ�t�"���,*��n��p��-���р#�Ȋ��u�Mh�Lé5b�y�‚A\�� >> �r��a�6�=���r�H�&�� ����n]8�Rڙ�ҏn]D�([�)���l�O� ��DL�� �Q_Gm�%Ǝ^�P���3��Fŕ;������^ 9�b��]���!i��������E����V�\���������J�&��(a�Rr�QY''!1:eۣ��doʆɡ�H�yZ����Zɔ�_��8�F~p�J�@o��@z���@�T���V�����)*A���%&�m�ᐭ��]h�:8���Vؘ LN��ϰ��@)x ¥|�K��I*����u�.!���o�fN����Jg�����J�**h���:%Li]�ۇ�! ���ot&����C@�!��.om����aU:@^�v����Mh��M���Yd�W7�a+�*���UPxh���K=r�!o���O-��R�;�1�yq�Ct5m^��u]���,��h�H��޷��_��Y�| �vEӈ��M�ԭhC�[Vum��ܩ�UQށX ��` �':v�udPۺ���ӟ�4���#5�� �(,""M��6�.z͢��x��d��}�v�obwL��L��Yo������+�S���o����Ǐ��� -�}J*�J!9aDpc��Y�c��,�sP��k��&����9�zR�*����%�f5ګӈu�|�rݪ�$ 1. �f���~��=��p�˰�(��ƽ׳�G�:����$������G�9q�6F� �Hu�@��[�^�/d�;P-��Ğ [V�; 8$G'T���EI���`��R) �~����.9yHr�S ɩ��侻��B|��+J�q��Xsn��x��v�݊>��1��k��ў�M��ܠ���� *{PS���_Ӏ}H_�J.��iC),�� c���H�Y!a We do not develop their theory in detail, and we leave the verifications and proofs as an exercise. 20 0 obj << [΄�L In other words, no sequence may converge to two different limits. %���� Then we can de ne Discrete metric space is often used as (extremely useful) counterexamples to illustrate certain concepts. endstream How To Make Dough Without Flour, Ina Garten Green Beans Garlic, Woh Lamhe Jubin Nautiyal Lyrics, St Michaels School Remus Mi, Hanover Eagle Cam Facebook, Water-soluble Bases Ointment, " />

F+��G1+9�yQ6�j �s����m�s)�eY�w!h��Ex�����r��Fdg��z.��\��e�y��ZWm� �f����V�%�YM�hZ��ۺ��e�A�;Xǁ�fY�����ž.���i�����-�����*۞ѓ�Rޭ�MIc�U�ZUSS㢾�e)��kCi&��Hf�l�W0���:��5,E��5�v��$ �xn�%������ >�h_�Pc4Ȏw~㲤J�������V�yG ��&��Hft�(Y���)����?�MCc]�Oz+`h �@�r��߄���J����>�����Hjp��ai����.��I�^�t��=yƸ���=t�}ý��jq��:��Ş�(ޅ�0)̗�� `3b�)���^�z]�&Ve�,� Introduction When we consider properties of a “reasonable” function, probably the first thing that comes to mind is that it exhibits continuity: the behavior of the function at a certain point is similar to the behavior of the function in a small neighborhood of the point. /Length 3785 Example 1.1. 2. is sequentially compact. 3 0 obj << (i) V is a R -vector space: If either x = 0 or y = 0 the inequality is obvious. Assume that is not sequentially compact. )O"�cd%Q���D��Z�Hdz³. The di cult point is usually to verify the triangle inequality, and this we do in some detail. /Filter /FlateDecode Euclidean Space and Metric Spaces 8.1 Structures on Euclidean Space ... EUCLIDEAN SPACE AND METRIC SPACES Examples 8.1.2. In most cases, the proofs x��\I��6��W���. 1. Examples of metric spaces. Proof: Exercise. %PDF-1.5 Proof. 5 0 obj << [���%�xjR�JM�S3Uq��n�QK-�������H�N;s�H������7�)�H�e�'�WL�L��Hi5��O~I��k!������O�^���{�'8E:���t2%��y�~�or׍�(F� �m�=�F҈^�xw1%R%S�Ɔ�I�Z�����)F�J��bHR:i��+,Y���T�`L[��4DŽU��)�4�V��,�F���T! ��]�3�G)b�q;�S��R����2}bl~������AK�:�`~M�M0��U]4U}v�#ثA�h@B�˼�DХj�����l�1+��u�1�Yݝ�*��u�T�;�S�C�QP �k���=Y�]T� ����e���2'��(�ϙ�����q� Suppose {x n} is a convergent sequence which converges to two different limits x 6= y. Often, if the metric dis clear from context, we will simply denote the metric space (X;d) by Xitself. The set of real numbers R with the function d(x;y) = jx yjis a metric space. stream %���� �`P���i�w?�[����>rbWg�Y�vhl7��n*��O�K:}��vR�!�9#�]������l��d�i�PN��VpV�#uDp��ݳ�6|]�M�[��K�A1���J(�F�q@ H ��!/�T-c�SZ�$����ZKr��Z� �|.����ĭ�?�����F��b��/���$��h���m�WE���/AI��E�� |i S���b�f]�MHgA)��9V �q� �j�Bӆ�^�����iY��V ��)�Қ�c��E�d{|l8���Tx� ��ȼ�,�i Y!��~ź��yg��L��P�CX���cU2{9 e����F�e&m�3J�1������8߭K̥|N�����d5��H���h�{�T�CY ��K꼩���2N����[³�����SƍU�gL=o�Wh�m� Non-examples. METRIC AND TOPOLOGICAL SPACES 3 1. Any incomplete space. We now give examples of metric spaces. Example 1. /Length 2734 /Length 3871 >> Assume therefore that x 6= 0 and y 6= 0. stream Therefore our de nition of a complete metric space applies to normed vector spaces: an n.v.s. Turns out, these three definitions are essentially equivalent. The fact that every pair is "spread out" is why this metric is called discrete. (��c��p�>����V���;0y����\|ʋr�0��}�b1WzApC�""�۷_y�8Y`[1M����A��(Y���/�����P�|�]�p�"˗���Ge`����:hH�`Q|�GS)0�iz;.��ݴ��:��%��� x��َ���}�B�'�ðor~ȱIl� � �~�J��)��������橖4cO�$/R���uuUu1Y�-�ş�������ퟘY0���v���nj��I�8�lq�Z|��jms}#�������m],��~�/����o�Z�$Β�!�&D��lq�U,DF�n7���7\��$�\Ȩ(�y�uU�KK��Ə]V���[�Tk�����xY���g������r��f�x�/��lh��ęJ���a������6���b���?�����%5ڦ�t�"���,*��n��p��-���р#�Ȋ��u�Mh�Lé5b�y�‚A\�� >> �r��a�6�=���r�H�&�� ����n]8�Rڙ�ҏn]D�([�)���l�O� ��DL�� �Q_Gm�%Ǝ^�P���3��Fŕ;������^ 9�b��]���!i��������E����V�\���������J�&��(a�Rr�QY''!1:eۣ��doʆɡ�H�yZ����Zɔ�_��8�F~p�J�@o��@z���@�T���V�����)*A���%&�m�ᐭ��]h�:8���Vؘ LN��ϰ��@)x ¥|�K��I*����u�.!���o�fN����Jg�����J�**h���:%Li]�ۇ�! ���ot&����C@�!��.om����aU:@^�v����Mh��M���Yd�W7�a+�*���UPxh���K=r�!o���O-��R�;�1�yq�Ct5m^��u]���,��h�H��޷��_��Y�| �vEӈ��M�ԭhC�[Vum��ܩ�UQށX ��` �':v�udPۺ���ӟ�4���#5�� �(,""M��6�.z͢��x��d��}�v�obwL��L��Yo������+�S���o����Ǐ��� -�}J*�J!9aDpc��Y�c��,�sP��k��&����9�zR�*����%�f5ګӈu�|�rݪ�$ 1. �f���~��=��p�˰�(��ƽ׳�G�:����$������G�9q�6F� �Hu�@��[�^�/d�;P-��Ğ [V�; 8$G'T���EI���`��R) �~����.9yHr�S ɩ��侻��B|��+J�q��Xsn��x��v�݊>��1��k��ў�M��ܠ���� *{PS���_Ӏ}H_�J.��iC),�� c���H�Y!a We do not develop their theory in detail, and we leave the verifications and proofs as an exercise. 20 0 obj << [΄�L In other words, no sequence may converge to two different limits. %���� Then we can de ne Discrete metric space is often used as (extremely useful) counterexamples to illustrate certain concepts. endstream

How To Make Dough Without Flour, Ina Garten Green Beans Garlic, Woh Lamhe Jubin Nautiyal Lyrics, St Michaels School Remus Mi, Hanover Eagle Cam Facebook, Water-soluble Bases Ointment,